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vodárenskou věž́ı 4, 18208 Praha 8, Czech Republic,

katerina.schindler@assoc.oeaw.ac.at

Abstract

We present a new lower bound on minimal singular values of real matrices
base on Frobenius norm and determinant. We show, that under certain as-
sumptions on matrix A is our estimate sharper than two recent ones based on
a matrix norm and determinant.

1. Introduction

The eigenvalues or singular values of real matrices are difficult to evaluate
in general. It is however useful to know an approximate location of these val-
ues. For a Hermitian positive definite matrix, the ratio of the largest to the
smallest eigenvalue is useful in determining whether the equation Ax = b is ill-
conditioned or not. Probably the first bounds for eigenvalues have been achieved
already more than a hundred years ago. Possibly the best-known inequality on
eigenvalues is from Gerschgorin in 1931 [1]. The first paper using traces in
eigenvalue inequalities was from Schur in 1909 [3]. Our paper deals with lower
bounds on the minimal singular values.

2. Preliminaries and recent estimates

Let A be a n×n, n ≥ 2 matrix with real elements. Let ‖A‖E = (
∑n

i,j=1 |aij |2)1/2

be the Frobenius (or Euclidean) norm of matrix A. Trace of a n × n matrix
A denotes tr(A) =

∑n
i=1 aii. The spectral norm of the matrix A is ‖A‖2 =√

max1≤i≤n λi, where λi is eigenvalue of AT A. If λ1, . . . , λn are the eigenvalues
of the matrix A, then detA = λ1λ2 . . . λn. Denote the smallest singular value of
A by σn and its largest singular value by σ1. It holds that ‖A‖2E =

∑n
i=1 σ2

i =
tr(AT A), where trace tr(AT A) =

∑n
i=1 σ2

i . The condition number of matrix A
is κ(A) = σmax

σmin
.
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Yu Yi-Sheng and Gu Dun-he gave in 1997 [6] a lower bound for σn for a
nonsingular matrix as

σmin ≥ (
n− 1
‖A‖2E

)(n−1)/2|detA|, (1)

and G. Piazza and T. Politi gave in 2002 [4] a lower bound on the minimal
singular matrix with positive singular values as

σmin ≥ |detA|
2(n−2)/2‖A‖E

. (2)

In 2007 Turkmen and Civcic in [7] also used matrix norm and determinant
for finding upper bounds for maximal and minimal singular value of positive
definite matrices.
For symmetric positive definite matrix A, we can suppose ‖A‖2 = 1, i.e. that
the matrix A is normalized, where ‖.‖2 is the Euclidean norm. Consequently for
its condition number is κ(A) = ‖A‖2‖A−1‖2 = 1

σn
. The matrix normalization

can be always achieved by multiplying the set of equations Ax = b by a suitable
constant or for example by the divisive normalization defined by Weiss [8] or Ng
et al. [5]), which uses the Laplacian L of the symmetric positive definite matrix
A. The transformation is defined by D−1/2AD−1/2, where D = {dij}n

i,j=1 and
dij = 0 for i 6= j and dij =

∑n
j=1 aij for i = j, where A = {aij}n

i,j=1.

3. Our result

Theorem 1. Let A be a nonsingular matrix with singular values σi so that
|σmax| = |σ1| ≥ . . . ≥ |σn| = |σmin| and let |σmax| 6= |σmin|. Let ‖A‖E =
(
∑n

i,j=1 |aij |2)1/2 be the Euclidean norm of matrix A.

(i) Then for its minimal and maximal singular values holds

0 <


 ‖A‖2E − nσ2

max

n(1− σ2
max

|detA|2/n )




1/2

≤ σmin. (3)

(ii) For |σmax| = 1 (supposing that |detA| 6= 1) holds

0 <

( |detA|2/n(‖A‖2 − 1)
n(|detA|2/n − 1)

)1/2

≤ σmin.

Proof:
(i) We will apply the following result of Diaz and Metcalf ([2]) which is a stronger
form of Pólya-Szegö and Kantorovich’s inequality. Let the real numbers ak 6= 0
and bk (k = 1, . . . , n) satisfy m ≤ bk

ak
≤ M . Then

∑m
k=1 b2

k + mM
∑n

k=1 a2
k ≤

(m + M)
∑n

k=1 akbk.
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Let bk = σk, ak = 1
σk

, m = σ2
min, M = σ2

max, let m 6= M . Then from the
Diaz and Metcalf’s inequality follows, that

∑
σ2

k + mM
∑

1
σ2

k

≤ (M + m)m,

which is equivalent to ‖A‖2E ≤ Mn + mn − mMn
|detA|2/n and that to ‖A‖2E

n −M ≤
m(1 − M

|detA|2/n ) and from that follows ‖A‖2E−Mn

n(1− M

|detA|2/n
)
≤ m = σ2

min and the

statement of theorem follows.
1.
(i) It holds that 0 <

‖A‖2E−Mn

n(1− M

|detA|2/n
)
, since to be true must hold (‖A‖2E −Mn > 0

and 1− M
|detA|2/n > 0) or (‖A‖2E−Mn < 0 and 1− M

|detA|2/n < 0). The second term

‖A‖2E −Mn < 0 and 1 − M
|detA|2/n < 0 holds, since ‖A‖2E =

∑n
i=1 σ2

i < σmaxn

and Πn
i=1σ

2
i = |detA|2 < Mn = (σ2

max)n. (ii) follows form (i).

4. Comparison with other lower estimates

Theorem 2. Let for a n×n- nonsingular matrix A with n > 2 holds |detA| 6= 1.
Then

0 ≤ |detA|
2

n−2
2 ‖A‖E

<


 ‖A‖2E − nσ2

max

n(1− σ2
max

|detA|2/n )




1/2

≤ σmin, (4)

respectively for |σmax| = 1

0 ≤ |detA|
2

n−2
2 ‖A‖E

<

(
‖A‖2E − n

n(1− 1
|detA|2/n )

)1/2

≤ σmin, (5)

i.e. the lower bound from Theorem 1 is sharper than the lower bound (2) from
G. Piazza and T. Politi.

Proof:
We prove first the inequation (5). Assume that the opposite of (5) holds, i.e.

|detA|2
2n−2‖A‖2E

≥ ‖A‖2E − n

n(1− 1
|detA|2/n )

(6)

This is equivalent to
|detA|2

2n−2‖A‖2E
≥

1
n

∑
σ2

i − 1
1− 1

(Πσ2
i
)1/n

. (7)

One can easily observe that

|detA|
‖A‖E

=

√
Πσ2

i∑
σ2

i

≤ 1; (8)
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Applying the relationship of geometric and arithmetic mean, for the right hand
side of (7) holds

( 1
n

∑
σ2

i − 1)(Πσ2
i )1/n

(Πσ2
i )1/n − 1

≥ (Πσ2
i )1/n.

Then together with (8) and the left hand side of (7) is

1
2n−2

≥ (Πσ2
i )1/n.

(Πσ2
i )−1/n ≥ 2n−2.

−1
n

∑
lg2 σ2

i ≥ n− 2

0 > −
∑

lg2 σ2
i ≥ n(n− 2),

which leads for every n > 2 to a contradiction, therefore the statement (5) holds.
To prove (4), by the analogical proof by contradiction we get

|detA|2
2n−2‖A‖2E

≥ ‖A‖2E − nσ2
max

n(1− σ2
max

|detA|2/n )
=

( 1
n

∑
σ2

i − σ2
max)(Πσ2

i )1/n

(Πσ2
i )1/n − σ2

max

≥ (Πσ2
i )1/n. (9)

and the rest of the proof is identical to the previous case.

We will show that our estimate of minimal singular value is under certain
conditions also sharper than the estimate from Yu Yi-Sheng and Gu Dun-he.

Theorem 3. Let for a n× n- nonsingular matrix A with n > 1.

(i) If holds |detA| > 1 then

(n− 1)n−1

‖A‖2n−2(‖A‖2 − n)
≥ 1

n|detA|2(1− 1
|detA|

2/n)
, (10)

i.e. the estimate from Yu Yi-Sheng and Gu Dun-he is sharper than ours.

(ii) If for matrix A holds |detA| < min{1, ‖A‖
(n−1)n/2 } then

(n− 1)n−1

‖A‖2n−2(‖A‖2 − n)
<

1

n|detA|2(1− 1
|detA|

2/n)
, (11)

i.e. our estimate is sharper than the estimate (1) from Yu Yi-Sheng and
Gu Dun-he.

Proof: (i) Can be easily seen from the fact, that 1

|detA|2‖A‖
2n−2

n

≤ 1.

(ii): Assume that |detA| < 1. The inequality (11) is equivalent to

‖A‖2n−2|detA| 2n (‖A‖2 − n)
|detA|2(|detA| 2n − 1)

> n(n− 1)n−1 (12)
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Since between arithmetical mean A and geometrical mean G holds A ≥ G, in
our case is 1

n‖A‖2 = 1
n

∑n
i=1 σ2

i =≥ (Πn
i=1σ

2
i )

1
n = |detA| 2n and consequently

1
n‖A‖2−1

|detA| 2n−1
≤ 1. Then (12) can be rewritten as

‖A‖2n−2|detA| 2−2n
n n > n(n− 1)n−1

and consequently
‖A‖2n−2|detA| 2−2n

n > (n− 1)n−1,

which corresponds to the initial assumption

[
‖A‖

|detA| 1n ]2n−2 > (
√

n− 1)2n−2, (13)

and the statement is proven.
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